Menu

Alan HEGRON

NEW YORK

En résumé

Injury and inflammation trigger activation of proteases from the circulation, immune cells, and epithelial tissues. Many of these processes are regulated by G-Protein coupled receptors (GPCRs) which are a major target of therapeutics. Most GPCRs are active by a ligand that is released into the extracellular space. Agonist binding to a GPCR stabilizes an active receptor conformation which interacts with and activates heterotrimeric G proteins (Gαβγ) from cell surface and endosomal compartments. The Protease activated family of GPCRs (PARs) are unique in their mode of activation because they are activated by the cleavage at specific sites within the extracellular N-terminal domain of the GPCR. Protease-activated receptor type 2 (PAR2) is cleaved by various proteases which free different receptor tethered ligands that bind to and activate the cleaved PAR2. Once activated, PAR2 regulates multiple physiological and pathophysiological processes including inflammation and chronic pain. The aim of my project is to investigate the structural and molecular mechanisms that regulate PAR2 signaling following proteolytic cleavage. This research will assist us in designing novel and innovative therapeutic solutions for chronic pain or inflammation, which is in high demand.

Mes compétences :
R&D
Biotechnologies
Pharmacologie
Biologie moléculaire

Entreprises

  • New York University - Post-doctoral scientist

    2019 - maintenant Injury and inflammation trigger activation of proteases from the circulation, immune cells, and epithelial tissues. Many of these processes are regulated by G-Protein coupled receptors (GPCRs) which are a major target of therapeutics. Most GPCRs are active by a ligand that is released into the extracellular space. Agonist binding to a GPCR stabilizes an active receptor conformation which interacts with and activates heterotrimeric G proteins (Gαβγ) from cell surface and endosomal compartments. The Protease activated family of GPCRs (PARs) are unique in their mode of activation because they are activated by the cleavage at specific sites within the extracellular N-terminal domain of the GPCR. Protease-activated receptor type 2 (PAR2) is cleaved by various proteases which free different receptor tethered ligands that bind to and activate the cleaved PAR2. Once activated, PAR2 regulates multiple physiological and pathophysiological processes including inflammation and chronic pain. The aim of my project is to investigate the structural and molecular mechanisms that regulate PAR2 signaling following proteolytic cleavage. This research will assist us in designing novel and innovative therapeutic solutions for chronic pain or inflammation, which is in high demand.
  • Columbia university - Post-doctoral fellow

    2019 - 2019 Injury and inflammation trigger activation of proteases from the circulation, immune cells, and epithelial tissues. Many of these processes are regulated by G-Protein coupled receptors (GPCRs) which are a major target of therapeutics. Most GPCRs are active by a ligand that is released into the extracellular space. Agonist binding to a GPCR stabilizes an active receptor conformation which interacts with and activates heterotrimeric G proteins (Gαβγ) from cell surface and endosomal compartments. The Protease activated family of GPCRs (PARs) are unique in their mode of activation because they are activated by the cleavage at specific sites within the extracellular N-terminal domain of the GPCR. Protease-activated receptor type 2 (PAR2) is cleaved by various proteases which free different receptor tethered ligands that bind to and activate the cleaved PAR2. Once activated, PAR2 regulates multiple physiological and pathophysiological processes including inflammation and chronic pain. The aim of my project is to investigate the structural and molecular mechanisms that regulate PAR2 signaling following proteolytic cleavage. This research will assist us in designing novel and innovative therapeutic solutions for chronic pain or inflammation, which is in high demand.
  • Inserm jointly with IRIC - PhD student

    2014 - 2018 PhD done in Dr Ralf JOCKERS' laboratory (Inserm) jointly with Dr Michel BOUVIER's laboratory (IRIC).
    Title : Modulation of dopamine transporter activity by melatonin receptors.
  • Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal (Canada) - Stagiaire

    2014 - 2014 Analyse fonctionnelle de formes mutantes du récepteur de type 4 de la mélanocortine (MC4R) responsables du développement de l’obésité sévère précoce.
    Techniques utilisées : BRET, FACS, transfections, culture de cellules HEK293
  • Institut Jacques Monod - Stagiaire

    2013 - 2013 Stage de 2 mois en biologie du développement.
    Sujet : Etude de la régulation de l’expression génétique de Nodal chez l’embryon de souris.
    Techniques utilisées : Marquage In-Situ et immunofluorescence sur des embryons de souris, extraction et culture d'embryons de souris.
  • Oroxcell - Technicien de recherche in-vitro

    2011 - 2012 Culture cellulaire, dosages fluorométriques et ELISA, mesure de la résistance électrique trans-épithéliale, test d’irritation, d’absorption et de toxicité cellulaire en milieu BPL(de la réalisation à la rédaction du rapport).
  • L'OREAL - Technicien de recherche

    PARIS 2010 - 2011 Mission : Mise au point de techniques de type ELISA pour criblage à haut débit

    Culture cellulaire, programmation d'un pipeteur Hamilton, chromatographie d'exclusion, marquages et dosages protéiques, ELISA.
  • INSERM - Stagiaire

    PARIS 13 2009 - 2010 mission : Purification et détermination de la séquence minimale du domaine 3 du récepteur à l’IL-15 nécessaire aux activités du domaine de liaison.

    J'ai réalisé des purifications par filtration, des chromatographies d'affinité. J'ai fait de la culture cellulaire et de l'étude de prolifération, notamment par radioactivité, de l'étude d'affinité de protéines par biacore et avec la modélisation 3D.
  • Mer Molécules Santé - Stagiaire

    2008 - 2009 mission : Peptaïbols produits par des souches fongiques marines de Trichoderma : étude de leur toxicité – intérêt en chimiotaxonomie.

    J'ai réalisé de la culture de souches fongiques marines de Trichoderma, leur filtration et leur purification. J'ai extrait les peptaïbols (petits peptides produits par certaines souches fongiques) et les ai étudiés par spectrométrie de masse. J'ai également testé la neurotoxicologie de ces peptaïbols avec et sans présence d'acide Domoïque (neurotoxine sécrétée par une algue marine), notamment par injection sur larves de diptère.

Formations

Réseau

Annuaire des membres :